Recursos
Documentos
En la presente memoria se recolectan y se presentan aspectos importantes sobre el funcionamiento de la Sección de Matemática durante el año 2019, y el impacto que esta tiene en distintos ámbitos: Docencia, Investigación y Acción Social.
En la presente memoria se recolectan y se presentan aspectos importantes sobre el funcionamiento de la Sección de Matemática durante el año 2018, y el impacto que esta tiene en distintos ámbitos: Docencia, Investigación y Acción Social.
En la presente memoria se recolectan y se presentan aspectos importantes sobre el funcionamiento de la Sección de Matemática durante el año 2020, y el impacto que esta tiene en distintos ámbitos: Docencia, Investigación y Acción Social.
Puede consultar aquí la programación de la Semana de la Matemática 2021
La Sección de Matemática de la Sede de Occidente, Universidad de Costa Rica, se complace en presentar la Memoria 2021. Este documento tiene como objetivo recopilar las principales actividades desarrolladas por esta instancia durante el año, ilustrar el impacto que esta tiene en distintos ámbitos: Docencia, Investigación y Acción Social, y divulgar a la comunidad en general el quehacer de la carrera Bachillerato y Licenciatura en la Enseñanza de la Matemática. Las ediciones anteriores
corresponden a la Memoria 2018, Memoria 2019 y Memoria 2020.
La Sección de Matemática de la Sede de Occidente, Universidad de Costa Rica, se complace en presentar la Memoria 2022. Este documento tiene como objetivo recopilar las principales actividades desarrolladas por esta instancia durante el año, ilustrar el impacto que esta tiene en distintos ámbitos: Docencia, Investigación y Acción Social, y divulgar a la comunidad en general el quehacer de la carrera Bachillerato y Licenciatura en la Enseñanza de la Matemática. Las ediciones anteriores corresponden a la Memoria 2018, Memoria 2019, Memoria 2020 y Memoria 2021, que se encuentran disponibles en el siguiente link: https://portal.so.ucr.ac.cr/matematica/recursos.
La Sección de Matemática de la Sede de Occidente les invita cordialmente a participar en la Semana de la Matemática, la cual se realizará del 11 al 20 de setiembre, en la Sede de Occidente.
La Sección de Matemática de la Sede de Occidente, Universidad de Costa Rica, se complace en presentar la Memoria 2023. Este documento tiene como objetivo recopilar las principales actividades desarrolladas por esta instancia durante el año, ilustrar el impacto que esta tiene en distintos ámbitos: Docencia, Investigación y Acción Social, y divulgar a la comunidad en general el quehacer de la carrera Bachillerato y Licenciatura en la Enseñanza de la Matemática. Las ediciones anteriores corresponden a la Memoria 2018, Memoria 2019, Memoria 2020, Memoria 2021, y Memoria 2022 que se encuentran disponibles en el siguiente enlace: https://portal.so.ucr.ac.cr/matematica/recursos.
Proyectos/Publicaciones
In this paper we develop the a posteriori error analysis of an augmented mixed-primal finite element method for the 2D and 3D versions of a stationary flow and transport coupled system, typically encountered in sedimentation–consolidation processes. The governing equations consist in the Brinkman problem with concentration-dependent viscosity, written in terms of Cauchy pseudo-stresses and bulk velocity of the mixture; coupled with a nonlinear advection – nonlinear diffusion equation describing the transport of the solids volume fraction. We derive two efficient and reliable residual-based a posteriori error estimators for a finite element scheme using Raviart–Thomas spaces of order k for the stress approximation, and continuous piecewise polynomials of degree ≤k+1 for both velocity and concentration. For the first estimator we make use of suitable ellipticity and inf–sup conditions together with a Helmholtz decomposition and the local approximation properties of the Clément interpolant and Raviart–Thomas operator to show its reliability, whereas the efficiency follows from inverse inequalities and localisation arguments based on triangle-bubble and edge-bubble functions. Next, we analyse an alternative error estimator, whose reliability can be proved without resorting to Helmholtz decompositions. Finally, we provide some numerical results confirming the reliability and efficiency of the estimators and illustrating the good performance of the associated adaptive algorithm for the augmented mixed-primal finite element method.
M. Álvarez, G.N. Gatica and R. Ruiz-Baier. A posteriori error estimation for an augmented mixed-primal method applied to sedimentation-consolidation systems. Journal of Computational Physics, vol. 367, pp. 322- 346, (2018). DOI: http://dx.doi.org/10.