Recursos
Documentos
En la presente memoria se recolectan y se presentan aspectos importantes sobre el funcionamiento de la Sección de Matemática durante el año 2019, y el impacto que esta tiene en distintos ámbitos: Docencia, Investigación y Acción Social.
En la presente memoria se recolectan y se presentan aspectos importantes sobre el funcionamiento de la Sección de Matemática durante el año 2018, y el impacto que esta tiene en distintos ámbitos: Docencia, Investigación y Acción Social.
En la presente memoria se recolectan y se presentan aspectos importantes sobre el funcionamiento de la Sección de Matemática durante el año 2020, y el impacto que esta tiene en distintos ámbitos: Docencia, Investigación y Acción Social.
Puede consultar aquí la programación de la Semana de la Matemática 2021
La Sección de Matemática de la Sede de Occidente, Universidad de Costa Rica, se complace en presentar la Memoria 2021. Este documento tiene como objetivo recopilar las principales actividades desarrolladas por esta instancia durante el año, ilustrar el impacto que esta tiene en distintos ámbitos: Docencia, Investigación y Acción Social, y divulgar a la comunidad en general el quehacer de la carrera Bachillerato y Licenciatura en la Enseñanza de la Matemática. Las ediciones anteriores
corresponden a la Memoria 2018, Memoria 2019 y Memoria 2020.
La Sección de Matemática de la Sede de Occidente, Universidad de Costa Rica, se complace en presentar la Memoria 2022. Este documento tiene como objetivo recopilar las principales actividades desarrolladas por esta instancia durante el año, ilustrar el impacto que esta tiene en distintos ámbitos: Docencia, Investigación y Acción Social, y divulgar a la comunidad en general el quehacer de la carrera Bachillerato y Licenciatura en la Enseñanza de la Matemática. Las ediciones anteriores corresponden a la Memoria 2018, Memoria 2019, Memoria 2020 y Memoria 2021, que se encuentran disponibles en el siguiente link: https://portal.so.ucr.ac.cr/matematica/recursos.
La Sección de Matemática de la Sede de Occidente les invita cordialmente a participar en la Semana de la Matemática, la cual se realizará del 11 al 20 de setiembre, en la Sede de Occidente.
La Sección de Matemática de la Sede de Occidente, Universidad de Costa Rica, se complace en presentar la Memoria 2023. Este documento tiene como objetivo recopilar las principales actividades desarrolladas por esta instancia durante el año, ilustrar el impacto que esta tiene en distintos ámbitos: Docencia, Investigación y Acción Social, y divulgar a la comunidad en general el quehacer de la carrera Bachillerato y Licenciatura en la Enseñanza de la Matemática. Las ediciones anteriores corresponden a la Memoria 2018, Memoria 2019, Memoria 2020, Memoria 2021, y Memoria 2022 que se encuentran disponibles en el siguiente enlace: https://portal.so.ucr.ac.cr/matematica/recursos.
Proyectos/Publicaciones
We develop the a posteriori error analysis for a mixed finite element method applied to the coupling of Brinkman and Darcy equations in 3D, modelling the interaction of viscous and non-viscous flow effects across a given interface. The system is formulated in terms of velocity and pressure within the Darcy subdomain, together with vorticity, velocity and pressure of the fluid in the Brinkman region, and a Lagrange multiplier enforcing pressure continuity across the interface. The solvability of a fully-mixed formulation along with a priori error bounds for a finite element method have been recently established in Álvarez et al. ( Comput Methods Appl Mech Eng 307:68–95, 2016). Here we derive a residual-based a posteriori error estimator for such a scheme, and prove its reliability exploiting a global inf-sup condition in combination with suitable Helmholtz decompositions, and interpolation properties of Clément and Raviart–Thomas operators. The estimator is also shown to be efficient, following a localisation strategy and appropriate inverse inequalities. We present numerical tests to confirm the features of the estimator and to illustrate the performance of the method in academic and application-oriented problems.
M. Álvarez, G.N. Gatica and R. Ruiz-Baier. A posteriori error analysis of a fully-mixed formulation for the Brinkman-Darcy problem. Calcolo, vol.54, 4, pp. 1491- 1519, (2017). DOI: http://dx.doi.org/10.